LinuxSir.cn,穿越时空的Linuxsir!

 找回密码
 注册
搜索
热搜: shell linux mysql
查看: 3199|回复: 7

[操作系统][编码、字符集][转载]关于Unicode 和字符集的最基础的知识

[复制链接]
发表于 2006-5-9 17:18:44 | 显示全部楼层 |阅读模式
作者: magic  发布日期: 2006-3-08    查看数: 181   出自: http://www.linuxsky.net
原文标题: The Absolute Minimum Every Software Developer Absolutely, Positively Must Know
About Unicode and Character Sets(No Excuses!)
原文链接: www.joelonsoftware.com/printerFriendly/articles/Unicode.html


ASCII 码
------------------------------------------------------------------------------------
7 位(00~7F)。 32 ~ 127 表示字符。32 是空格, 32 以下是控制字符(不可见)。
第8位没有被使用。全世界很多人同时对这个位的含义发展了不同的用处。比如 IBM PC 中的 OEM 字符集。
最后就 128 位以下的用处达成共识,制定了 ASCII 标准。
而 128 位以上的可能有不同的解释,这些不同的解释就叫做 code pages.
甚至有用于在同一台电脑上解释多种语言的 code page.

同时,在亚洲发生了更加疯狂的事情。亚洲语言的字符集通常数以千计, 8 位已经不足以表达,这通常用一种
很凌乱的,叫做 DBCS(双字节字符集,double byte character set) 的系统来解决。
这种系统中,有些字符占用 1 字节,有些 2 字节。这样一来,在字符串中向前解析很容易,而倒退却很麻烦。
程序员们被建议,不要使用 s++ 或 s-- 来前进和后退,而使用一些函数,比如 Windows 的 AnsiNext 和
AnsiPrev. 因为这些函数知道是怎么回事。

这些不同的假设(code page)在单个的机器上没有问题。而随着 Internet 的发展,字符串要从一个机器上移到
另一个机器上,这就产生了问题。于是, Unicode 出现了。

Unicode
---------------------------------------------------------------------------------------
Unicode 是一个勇敢的成就。它把在这个星球上的每一个合理的文字系统整合成了一个单一的字符集。
很多人还存在这样的误解: Unicode 仅仅是 16 位的这么简单,每个字符占 16 位,所以一共有 65536 个可能的字符。
然而,这是错误的。不过不要紧,因为这是大部分人都会犯的一个普遍的错误。

实际上,Unicode 理解字符的方式是截然不同的,而这是我们必须了解的。
到目前为止,我们都曾经认为:一个字符对应到一些在磁盘上或内存中储存的位(bits). 如: A -> 0100 0001
而在 Unicode 中, 一个字符实际上对应一种叫做 code point 的东西。
比如 A 这个字符,是抽象的(原文:platonic,柏拉图式的,理想的)一个概念。
无论是 Times New Roman 或者 Helvetica 或者其他的什么字体中,都代表同一个字符。但是它和小写的字母 a 不同。
但是在其他的语言,比如希伯莱语(Hebrew) 或者德语(German), 阿拉伯语(Arabian) 中,同一个字母的不同的字形代表的含义是否
相同,是有争议的。经过长时间的争论,这些也终于被确定了。

每一个字母表中的每一个抽象的字母,都被赋予了一个数字,比如 U+0645. 这个叫做 code point.
U+ 表示: Unicode, 数字是 16 进制的。
你可以通过 charmap 命令来查看所有这些编码。(Windows 2000/XP 中). 或者访问 Unicode 的网站(http://www.unicode.org)
Unicode 中 code point 的数字的大小是没有限制的,而且也早就超过了 65535. 所以不是每个字符都能存储在两个字节中。
那么,一个字符串 "Hello", 在 Unicode 中会表示成 5 个 code points :
U+0048 U+0065 U+006C U+006C U+006F
只不过是一些数字。但我们现在还没有提到如何在磁盘或者 Email 中表示这些信息,这就是我们下面要提到的编码(Encoding) 干的事情。

Encodings (编码)
-------------------------------------------------------------------------
最初的 Unicode Encoding, 使用两个字节表示一个字符。那么 "Hello" 表示为:
00 48 00 65 00 6C 00 6C 00 6F
实际上,还有一种表示方式:
48 00 65 00 6C 00 6C 00 6F 00
到底高位字节在前还是低位字节在前面,是两种不同的模式。这要看特定的 CPU 在何种模式下工作的更快。 所以这两种都有。
这就有了两种不同的 Unicode 表示方式了,为了区分,人们又采用了一种奇异的方式:
在每一个 Unicode 字符串的前面,加上 FEFF (这称为 Unicode 字节顺序标志,Unicode Byte Order Mark).
如果你交换高位和低位次序,那么会加上一个 FFFE. 这样,读这个字符串的人才知道要对每两个相邻的字节进行交换。
但在最初的时候,并不是每一个 Unicode 字符串都有这个标志的。

这看起来很不错。可程序员们开始抱怨了,“看看那些零!”。因为有些是美国人,他们使用英语。而英语中很少需要使用 U+00FF 以上的
字符, 有些人无法忍受采用双倍的存储空间来存储每个字符。
基于这些原因,很多人决定忽视 Unicode, 而同时,事情变得更糟了。

然后人们制定了 UTF-8. UTF-8 是用于保存 Unicode code points 的另一套系统。
每一个 U+ 数字,在内存中占用 8 bit. 在 UTF-8 中,任何一个 0~127 的 code point 占用一个字节。
只有 128 以及更大的才占用 2, 3, 直到 6 个字节。
具体如下图所示:

16进制的最小的数 16进制的最大的数 内存中的字节序列
------------------------------------------------------------------------------
00000000 0000007F 0vvvvvvv
00000080 000007FF 110vvvvv 10vvvvvv
00000800 0000FFFF 1110vvvv 10vvvvvv 10vvvvvv
00010000 001FFFFF 11110vvv 10vvvvvv 10vvvvvv 10vvvvvv
00200000 03FFFFFF 111110vv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv
04000000 7FFFFFFF 1111110v 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv

这看起来很不错,其中的英文字符和 ASCII 中一样。所以美国人根本没意识到有什么错误。只有世界上的其他国家需要使用高位的字节。
特别的,"Hello" 这个字符串,Unicode code point 为 U+0048 U+0065 U+006C U+006C U+006F, 会被存储为 48 65 6C 6C 6F。
和 ASCII, ANSI, 以及在这个星球上的任何一个 OEM 的字符集中表示的含义都一样。
现在,如果你需要表示重音的字符,或者希腊语,你需要使用多个字节来表示一个 code point. 但美国人不会介意这些。
(UTF-8 还有一个好处就是,老的字符串处理程序使用一个为 0 的字节来表示 null-terminator, 不会截断字符串)

到目前为止已经介绍了三种 Unicode 的表示方法:

传统的双字节表示方法, 称为 UCS-2(因为有 2 个字节) 或者 UTF-16(因为有 16 个位)
而且你还要搞清楚是高位在前的,还是高位在后的 UCS-2.

还有一种就是新的 UTF-8. 如果你的程序只使用英文的话,它仍然会工作正常。

实际上还有一堆的其他办法对 Unicode 进行编码:
有 UTF-7,这种编码方式大部分和 UTF-8 相同,但保证高位一定为 0.
所以如果你必须通过某种 Email 系统传送 Unicode,这些系统认为 7 位足够了,那使用 UTF-7 会正常。
还有 UCS-4, 储存每一个 code point 为 4 个字节。它的优点是每一个字符都保存为同样长的。但很明显,缺点是浪费太多存储空间了。

所以,现在你思考问题要把每一个字符想象成抽象的一个 unicode code point. 而它们同样可以使用任何旧的方式编码。
举例来说,你可以把 Unicode 字符串 Hello (U+0048 U+0065 U+006C U+006C U+006F) 编码(encode)为
ASCII, 或者古老的 OEM 希腊语编码,或者希柏莱 ANSI 编码,等等。而有些字符串不能显示!
也就是说,假如你要表示一个在某个编码中没有对应的 Unicode code point, 通常会显示为一个 ? 或者一个白色的小方框。

英文常用的一些编码有, Windows-1252(Windows 9x 标准 for 西欧语言)
以及 ISO-8859-1, aka Latin-1(对任何西欧语言也有效)
如果用这些编码来尝试存储俄文字符,你会得到一堆的 ?

UTF 7, 8, 16 以及 32 都有一个优点,能够正确的存储任何的 code point.

最简单,也是最重要的几个概念
====================================================================
一个字符串不指定它使用什么编码是没有意义的。
再也不要假定, “纯”文本(plain text) 是 ASCII.
没有 “纯文本” 这个东西。

如果你有一个字符串,在内存中,在文件中,或者在 Email 消息里,你必须知道它的编码是什么。否则你无法正确的解释或者显示给用户。
所有的诸如 “我的网页不能正常显示了”,或者 ”Email 消息不能正常显示了“ 之类的愚蠢问题, 都是因为, 没有告诉你到底是使用的那种编码,
UTF-8 还是 ASCII 还是 ISO 8859-1 或者 Windows 1252 ?? 那么自然无法正常的解释和显示,甚至不知道字符串该在哪里结束。

那么如何保留这样的编码标志,来表示字符串的编码? 有一些基本的办法。
比如对于 Email 来说,在表单的 header 中加上:

Content-Type:text/plain;charset="UTF-8"

对于 Web 页面来说,原来的做法是, Web 服务器随着 web 页面本身一起,发送一个类似于 Content-Type 的 http header.
(不是在 HTML 里面,而是作为一个 response header 在 HTML 页之前发送)

这样做有一个问题。如果你的 Web 服务器同时有多个站点,站点由多个不同的人用不同的语言开发的程序混在一起。那么 Web 服务器将无从得知,
每一个文件是用什么编码方式写的。这样也就无法发送正确的 Content-Type header.
如果你能够在每一个 HTML 文件中记录 Content-Type 信息,那么就很方便了。可这念头似乎也很疯狂,因为你还没有知道用什么编码方式去
读取这个文件,又怎么能读出编码信息呢?
幸好,几乎每一种编码中,对 32~127 的字符都解释的相同。所以你可以在每一个 html 文件中这么写:





但是要注意, 这个 meta 标签必须放在 head 中靠前面的位置才能保证不会出问题。 因为 Web 服务器读到这里的时候,就会停止解析,
然后用读到的这个编码方式重新解析页面。

那么,作为 Web 浏览器来说,如果没有在 meta 标签中或者 http headers 中发现 Content-Type, 会怎么样呢?
IE 是这么做的:
先尝试去猜,根据特定的字节出现在各种语言的典型的编码中的频率。
如果编码设定不正常,用户可以通过 View|Encoding 菜单来尝试不同的编码方式。(当然,不是每个人都知道该这样做)

在 VB, COM, Windows NT/2000/XP 中,默认的字符串类型是 UCS-2(2字节)的。
在 C++ 代码中, 我们可以定义字符串为 wchar_t(wide char),同时用 wcs 系列的函数代替 str 系列的函数。
如 wcscat, wcslen, 而不是 strcat, strlen.
在 C 代码中,要创建 UCS-2 字符串的话,只要在前面加一个 "L", 如 L"Hello"

对于 Web 页面,最好统一为使用 UTF-8 编码。 这个编码已经被各种 web 浏览器支持了很多年了.
发表于 2006-5-9 19:34:56 | 显示全部楼层
挺好, 省去自己整理备忘录的麻烦了. 感谢楼主
回复 支持 反对

使用道具 举报

发表于 2006-5-19 12:15:23 | 显示全部楼层
好文,正好要看这方面的东西~多谢楼主!
回复 支持 反对

使用道具 举报

发表于 2006-6-10 20:25:16 | 显示全部楼层
看完了,不过还是有些迷糊,希望看到进一步的讨论
回复 支持 反对

使用道具 举报

发表于 2006-6-20 12:01:28 | 显示全部楼层
有没有进一步的资料阿 ~
回复 支持 反对

使用道具 举报

发表于 2006-7-7 22:48:35 | 显示全部楼层

好东西

好东西呀。呵呵
回复 支持 反对

使用道具 举报

发表于 2006-7-10 17:10:26 | 显示全部楼层
wikipedia上有现成的资料
回复 支持 反对

使用道具 举报

发表于 2006-7-11 14:48:55 | 显示全部楼层
从基础版转一篇过来:
谈谈Unicode编码
http://bbs.linuxsir.cn/showthread.php?t=197380
===============================

1、字符编码、内码,顺带介绍汉字编码

字符必须编码后才能被计算机处理。计算机使用的缺省编码方式就是计算机的内码。早期的计算机使用7位的ASCII编码,为了处理汉字,程序员设计了用于简体中文的GB2312和用于繁体中文的big5。

GB2312(1980年)一共收录了7445个字符,包括6763个汉字和682个其它符号。汉字区的内码范围高字节从B0-F7,低字节从A1-FE,占用的码位是72*94=6768。其中有5个空位是D7FA-D7FE。

GB2312 支持的汉字太少。1995年的汉字扩展规范GBK1.0收录了21886个符号,它分为汉字区和图形符号区。汉字区包括21003个字符。2000年的 GB18030是取代GBK1.0的正式国家标准。该标准收录了27484个汉字,同时还收录了藏文、蒙文、维吾尔文等主要的少数民族文字。现在的PC平台必须支持GB18030,对嵌入式产品暂不作要求。所以手机、MP3一般只支持GB2312。

从ASCII、 GB2312、GBK到GB18030,这些编码方法是向下兼容的,即同一个字符在这些方案中总是有相同的编码,后面的标准支持更多的字符。在这些编码中,英文和中文可以统一地处理。区分中文编码的方法是高字节的最高位不为0。按照程序员的称呼,GB2312、GBK到GB18030都属于双字节字符集 (DBCS)。

有的中文Windows的缺省内码还是GBK,可以通过GB18030升级包升级到GB18030。不过GB18030相对GBK增加的字符,普通人是很难用到的,通常我们还是用GBK指代中文Windows内码。

这里还有一些细节:

*

GB2312的原文还是区位码,从区位码到内码,需要在高字节和低字节上分别加上A0。
*

在DBCS中,GB内码的存储格式始终是big endian,即高位在前。
*

GB2312 的两个字节的最高位都是1。但符合这个条件的码位只有128*128=16384个。所以GBK和GB18030的低字节最高位都可能不是1。不过这不影响DBCS字符流的解析:在读取DBCS字符流时,只要遇到高位为1的字节,就可以将下两个字节作为一个双字节编码,而不用管低字节的高位是什么。

2、Unicode、UCS和UTF

前面提到从ASCII、GB2312、GBK到GB18030的编码方法是向下兼容的。而Unicode只与ASCII兼容(更准确地说,是与ISO-8859-1兼容),与GB码不兼容。例如“汉”字的Unicode编码是6C49,而GB码是BABA。

Unicode 也是一种字符编码方法,不过它是由国际组织设计,可以容纳全世界所有语言文字的编码方案。Unicode的学名是"Universal Multiple-Octet Coded Character Set",简称为UCS。UCS可以看作是"Unicode Character Set"的缩写。

根据维基百科全书(http: //zh.wikipedia.org/wiki/)的记载:历史上存在两个试图独立设计Unicode的组织,即国际标准化组织(ISO)和一个软件制造商的协会(unicode.org)。ISO开发了ISO 10646项目,Unicode协会开发了Unicode项目。

在1991年前后,双方都认识到世界不需要两个不兼容的字符集。于是它们开始合并双方的工作成果,并为创立一个单一编码表而协同工作。从Unicode2.0开始,Unicode项目采用了与ISO 10646-1相同的字库和字码。

目前两个项目仍都存在,并独立地公布各自的标准。Unicode协会现在的最新版本是2005年的Unicode 4.1.0。ISO的最新标准是10646-3:2003。

UCS规定了怎么用多个字节表示各种文字。怎样传输这些编码,是由UTF(UCS Transformation Format)规范规定的,常见的UTF规范包括UTF-8、UTF-7、UTF-16。

IETF 的RFC2781和RFC3629以RFC的一贯风格,清晰、明快又不失严谨地描述了UTF-16和UTF-8的编码方法。我总是记不得IETF是 Internet Engineering Task Force的缩写。但IETF负责维护的RFC是Internet上一切规范的基础。

3、UCS-2、UCS-4、BMP

UCS有两种格式:UCS-2和UCS-4。顾名思义,UCS-2就是用两个字节编码,UCS-4就是用4个字节(实际上只用了31位,最高位必须为0)编码。下面让我们做一些简单的数学游戏:

UCS-2有2^16=65536个码位,UCS-4有2^31=2147483648个码位。

UCS -4根据最高位为0的最高字节分成2^7=128个group。每个group再根据次高字节分为256个plane。每个plane根据第3个字节分为 256行 (rows),每行包含256个cells。当然同一行的cells只是最后一个字节不同,其余都相同。

group 0的plane 0被称作Basic Multilingual Plane, 即BMP。或者说UCS-4中,高两个字节为0的码位被称作BMP。

将UCS-4的BMP去掉前面的两个零字节就得到了UCS-2。在UCS-2的两个字节前加上两个零字节,就得到了UCS-4的BMP。而目前的UCS-4规范中还没有任何字符被分配在BMP之外。

4、UTF编码

UTF-8就是以8位为单元对UCS进行编码。从UCS-2到UTF-8的编码方式如下:
UCS-2编码(16进制) UTF-8 字节流(二进制)
0000 - 007F 0xxxxxxx
0080 - 07FF 110xxxxx 10xxxxxx
0800 - FFFF 1110xxxx 10xxxxxx 10xxxxxx

例如“汉”字的Unicode编码是6C49。6C49在0800-FFFF之间,所以肯定要用3字节模板了:1110xxxx 10xxxxxx 10xxxxxx。将6C49写成二进制是:0110 110001 001001, 用这个比特流依次代替模板中的x,得到:11100110 10110001 10001001,即E6 B1 89。

读者可以用记事本测试一下我们的编码是否正确。

UTF -16以16位为单元对UCS进行编码。对于小于0x10000的UCS码,UTF-16编码就等于UCS码对应的16位无符号整数。对于不小于 0x10000的UCS码,定义了一个算法。不过由于实际使用的UCS2,或者UCS4的BMP必然小于0x10000,所以就目前而言,可以认为UTF -16和UCS-2基本相同。但UCS-2只是一个编码方案,UTF-16却要用于实际的传输,所以就不得不考虑字节序的问题。

5、UTF的字节序和BOM

UTF -8以字节为编码单元,没有字节序的问题。UTF-16以两个字节为编码单元,在解释一个UTF-16文本前,首先要弄清楚每个编码单元的字节序。例如收到一个“奎”的Unicode编码是594E,“乙”的Unicode编码是4E59。如果我们收到UTF-16字节流“594E”,那么这是“奎”还是 “乙”?

Unicode规范中推荐的标记字节顺序的方法是BOM。BOM不是“Bill Of Material”的BOM表,而是Byte Order Mark。BOM是一个有点小聪明的想法:

在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输字符"ZERO WIDTH NO-BREAK SPACE"。

这样如果接收者收到FEFF,就表明这个字节流是Big-Endian的;如果收到FFFE,就表明这个字节流是Little-Endian的。因此字符"ZERO WIDTH NO-BREAK SPACE"又被称作BOM。

UTF -8不需要BOM来表明字节顺序,但可以用BOM来表明编码方式。字符"ZERO WIDTH NO-BREAK SPACE"的UTF-8编码是EF BB BF(读者可以用我们前面介绍的编码方法验证一下)。所以如果接收者收到以EF BB BF开头的字节流,就知道这是UTF-8编码了。

Windows就是使用BOM来标记文本文件的编码方式的。

6、进一步的参考资料

http://scripts.sil.org/cms/scripts/p...IWS-Chapter04a

http://scripts.sil.org/cms/scripts/p...=IWS-Chapter03
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表