|
很久没和大家交流了,这次趁身体比较好,给大家带来一个关于蒙特卡罗的系列介绍,多数属抄袭,但仍然希望大家喜欢 :)
PS:身体太重要了,大家平时要多锻炼,保持心理平衡,我就是被心理问题苦苦困了6年
不多说了,进入正文吧:
--------------
1。简介
蒙特卡罗(Monte Carlo)方法又称随机抽样技巧或统计试验方法。半个多世纪以来,由于科学技术的发展和电子计算机的发明 ,这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。它是以概率统计理论为基础的一种方法。由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。
Monte Carlo方法是计算机模拟的基础,它的名字来源于世界著名的赌城——摩纳哥的蒙特卡洛,其历史起源于1777年法国科学家蒲丰提出的一种计算圆周 的方法——随机投针法,即著名的蒲丰投针问题。
例. 蒲丰氏问题
为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a( l<a)的平行线相交的频率代替概率P,再利用准确的关系式:
P=2l/Pi*a => Pi=2l/Pa
而P=~=n/N
所以Pi=~=2l/a*(N/n)
其中N为投计次数,n为针与平行线相交次数
参考资料:http://www.gxtvu.com.cn/eduwest/ ... aths/0092/8/8-2.htm
2。基本思想
由以上例子可以看出,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。这就是蒙特卡罗方法的基本思想。
当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。或者说,某种事件的概率也是随机变量(仅取值为1或0)的数学期望。
因此,可以通俗地说,蒙特卡罗方法是用随机试验的方法计算积分,即将所要计算的积分看作服从某种分布密度函数f(r)的随机变量g(r)的数学期望
<g>=g(r)f(r)在0到无穷上的积分 (<g>表示g的期望)
通过某种试验,得到N个观察值r1,r2,…,rN(用概率语言来说,从分布密度函数f(r)中抽取N个子样r1,r2,…,rN,),将相应的N个随机变量的值g(r1),g(r2),…,g(rN)的算术平均值作为积分的估计值(近似值)。
为了得到具有一定精确度的近似解,所需试验的次数是很多的,通过人工方法作大量的试验相当困难,甚至是不可能的。因此,蒙特卡罗方法的基本思想虽然早已被人们提出,却很少被使用。本世纪四十年代以来,由于电子计算机的出现,使得人们可以通过电子计算机来模拟随机试验过程,把巨大数目的随机试验交由计算机完成,使得蒙特卡罗方法得以广泛地应用,在现代化的科学技术中发挥应有的作用。
3。蒙特卡罗方法的特点
优点:
能够比较逼真地描述具有随机性质的事物的特点及物理实验过程。
受几何条件限制小。
收敛速度与问题的维数无关。
具有同时计算多个方案与多个未知量的能力。
误差容易确定。
程序结构简单,易于实现。
缺点:
收敛速度慢。
误差具有概率性。
在粒子输运问题中,计算结果与系统大小有关。
4。蒙特卡罗方法的主要应用范围
蒙特卡罗方法所特有的优点,使得它的应用范围越来越广。它的主要应用范围包括:粒子输运问题,统计物理,典型数学问题,真空技术,激光技术以及医学,生物,探矿等方面。随着科学技术的发展,其应用范围将更加广泛。
蒙特卡罗方法在粒子输运问题中的应用范围主要包括:实验核物理,反应堆物理,高能物理等方面。
蒙特卡罗方法在实验核物理中的应用范围主要包括:通量及反应率,中子探测效率,光子探测效率,光子能量沉积谱及响应函数,气体正比计数管反冲质子谱,多次散射与通量衰减修正等方面。 |
|