|
我们知道,参数的传递本质上是一次赋值的过程,赋值就是对内存进行拷贝。所谓内存拷贝,是指将一块内存上的数据复制到另一块内存上。
对于像 char、bool、int、float 等基本类型的数据,它们占用的内存往往只有几个字节,对它们进行内存拷贝非常快速。而数组、结构体、对象是一系列数据的集合,数据的数量没有限制,可能很少,也可能成千上万,对它们进行频繁的内存拷贝可能会消耗很多时间,拖慢程序的执行效率。
C/C++ 禁止在函数调用时直接传递数组的内容,而是强制传递数组指针,这点已在《C语言指针变量作为函数参数》中进行了讲解。而对于结构体和对象没有这种限制,调用函数时既可以传递指针,也可以直接传递内容;为了提高效率,我曾建议传递指针,这样做在大部分情况下并没有什么不妥,读者可以点击《C语言结构体指针》进行回顾。
但是在 C++ 中,我们有了一种比指针更加便捷的传递聚合类型数据的方式,那就是引用(Reference)。
在 C/C++ 中,我们将 char、int、float 等由语言本身支持的类型称为基本类型,将数组、结构体、类(对象)等由基本类型组合而成的类型称为聚合类型(在讲解结构体时也曾使用复杂类型、构造类型这两种说法)。
引用(Reference)是 C++ 相对于C语言的又一个扩充。引用可以看做是数据的一个别名,通过这个别名和原来的名字都能够找到这份数据。引用类似于 Windows 中的快捷方式,一个可执行程序可以有多个快捷方式,通过这些快捷方式和可执行程序本身都能够运行程序;引用还类似于人的绰号(笔名),使用绰号(笔名)和本名都能表示一个人。
引用的定义方式类似于指针,只是用&取代了*,语法格式为:
type &name = data;
type 是被引用的数据的类型,name 是引用的名称,data 是被引用的数据。引用必须在定义的同时初始化,并且以后也要从一而终,不能再引用其它数据,这有点类似于常量(const 变量)。
下面是一个演示引用的实例:
#include <iostream>
using namespace std;
int main() {
int a = 99;
int &r = a;
cout << a << ", " << r << endl;
cout << &a << ", " << &r << endl;
return 0;
}
运行结果:
99, 99
0x28ff44, 0x28ff44
本例中,变量 r 就是变量 a 的引用,它们用来指代同一份数据;也可以说变量 r 是变量 a 的另一个名字。从输出结果可以看出,a 和 r 的地址一样,都是0x28ff44;或者说地址为0x28ff44的内存有两个名字,a 和 r,想要访问该内存上的数据时,使用哪个名字都行。
注意,引用在定义时需要添加&,在使用时不能添加&,使用时添加&表示取地址。如上面代码所示,第 6 行中的&表示引用,第 8 行中的&表示取地址。除了这两种用法,&还可以表示位运算中的与运算。
由于引用 r 和原始变量 a 都是指向同一地址,所以通过引用也可以修改原始变量中所存储的数据,请看下面的例子:
#include <iostream>
using namespace std;
int main() {
int a = 99;
int &r = a;
r = 47;
cout << a << ", " << r << endl;
return 0;
}
运行结果:
47, 47
最终程序输出两个 47,可见原始变量 a 的值已经被引用变量 r 所修改。
如果读者不希望通过引用来修改原始的数据,那么可以在定义时添加 const 限制,形式为:
const type &name = value;
也可以是:
type const &name = value;
这种引用方式为常引用
|
|